Polynomials and Complex Numbers

Dimitar Grantcharov, Mid-Cities Math Circle

October 1, 2012

1 Warming up problems

In the following two problems one may use the fact that if \(z \) is a root of a polynomial \(P(z) \) and \(P(z) = P(1/z) \), then \(1/z \) is also a root of \(P(z) \).

Problem 1. Solve the equation \(z^8 + 4z^6 - 10z^4 + 4z^2 + 1 = 0 \).

Problem 2. Solve the equation
\[
4z^{11} + 4z^{10} - 21z^9 - 21z^8 + 17z^7 + 17z^6 + 17z^5 + 17z^4 - 21z^3 - 21z^2 + 4z + 4 = 0.
\]

Problem 3. (a) Find a polynomial with integer coefficients whose zeros include \(\sqrt{2} + \sqrt[3]{5} \).

(b) Find a polynomial with integer coefficients whose zeros include \(\sqrt{2} + \sqrt[3]{5} + \sqrt[5]{7} \).

Remark. Obviously Problem 3 (b) is substantially more difficult than Problem 3 (a). What would be the minimal degree of a polynomial one of the roots of which is \(\sqrt{2} + \sqrt[3]{5} + \sqrt[5]{7} \)?

Problem 4. Determine \(a, b \), so that \((x - 1)^2 \) divides \(ax^4 + bx^3 + 1 \).

2 Division with quotient and remainder

Division of polynomials. For any polynomials \(f(x) \) and \(g(x) \) there exist unique polynomials \(q(x) \) and \(r(x) \) such that
\[
f(x) = g(x)q(x) + r(x), \quad \deg r < \deg g \text{ or } r(x) = 0.
\]
For example, if \(f(x) = x^7 - 1 \) and \(g(x) = x^3 + x + 1 \) then the quotient \(q(x) \) is \(x^4 - x^2 - x + 1 \) and the remainder \(r(x) \) is \(2x^2 - 2 \). In the case \(g(x) = x - a \) we obtain an important fact: \(f(a) = 0 \) if and only if \(f(x) = (x - a)q(x) \) for some polynomial \(q(x) \).

The coefficients of the polynomials can be in \(\mathbb{C}, \mathbb{R}, \mathbb{Q}, \) or \(\mathbb{Z} \). In the case of \(\mathbb{Z} \) we may have a situation when the quotient and the remainder are not with integer coefficients. Take for example \(f(x) = x^2 \) and \(g(x) = 2x + 1 \). Is there any such problem with \(\mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \)?

Problem 5. Find the remainder of \(x^{81} + x^{49} + x^{25} + x^9 + x \) when divided by \(x^3 - x \).

Problem 6. Find the remainder of \(x^{1959} \) when divided by \((x^2 + 1)(x^2 + x + 1) \).

Problem 7. Let \(f(x) = x^4 + x^3 + x^2 + x + 1 \). Find the remainder of \(f(x^5) \) when divided by \(f(x) \).

Problem 8. Let \(p(x) \) be a polynomial with integer coefficients. Assume that \(p(a) = p(b) = p(c) = -1 \), where \(a, b, c \) are three different integers. Prove that \(p(x) \) has no integer zeros.

Problem 9. Let \(P(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \) be a polynomial with integer coefficients. Suppose that there exist four distinct integers \(a, b, c, d \) with \(P(a) = P(b) = P(c) = P(d) = 5 \). Prove that there is no integer \(k \) with \(P(k) = 8 \).

Problem 10. (USAMO 1975) If \(P(x) \) denotes a polynomial of degree \(n \) such that \(P(k) = k/(k+1) \) for \(k = 0, 1, 2, \ldots, n \), determine \(P(n+1) \).

3 Polynomial equations

Problem 11. Find all polynomials \(P(x) \) for which \(xP(x-1) = (x+1)P(x) \).

Problem 12. Determine all polynomials \(P(x) \) such that \(P(0) = 0 \) and \(P(x^2 + 1) = P(x)^2 + 1 \).

Problem 13. Find all polynomials \(P(x) \), for which \(P(x)P(2x^3) = P(2x^3 + x) \).
Problem 14. Let \(f : \mathbb{C} \rightarrow \mathbb{C} \) be a function such that \(f(z)f(iz) = z^2 \) for all complex numbers \(z \). Prove that \(f(z) + f(-z) = 0 \) for all complex numbers \(z \).

Problem 15. Find all polynomials \(P(x) \), for which \(P(x)P(2x^2) = P(2x^3 + x) \).

Problem 16. Find all polynomials \(P(x) \), for which \(P(x^2) + P(x)P(x+1) = 0 \).

4 Irreducibility of polynomials

Problem 17. Factor the following polynomials as products of irreducible polynomials with integer coefficients.

(a) \(x^4 + x^2 + 1 \), (b) \(x^{10} + x^5 + 1 \), (c) \(x^9 + x^4 - x - 1 \).

Problem 18. Prove that \((1 + x + \ldots + x^n)^2 - x^n \) is the product of two polynomials.

Problem 19. If \(a_1, \ldots, a_n \) are distinct integers, prove that \((x-a_1)\ldots(x-a_n) - 1 \) is irreducible.