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Abstract

This article provides a gentle introduction to the Mathematics of Zome, using a set of graded ex-
ercises. To use this material, each student, or group of students, will need a small set of Zome parts,
including all three lengths of struts that are red, blue and yellow.

Zome parts are available online fromwww.zometool.com.

How To Use This Article

The best way to use it, if you are studying by yourself, is to struggle with the exercises and a set of Zome
parts and then check the answer in the second part of the article. If you are teaching a class of younger
students using this as a worksheet, you can duplicate only the first part so the students can’t just look up
the answers. Even if you’re happy with your solution, read the official one, since there might be insights
there that you missed. Similarly, as your students solve theproblems, make sure they’ve learned all they
can at each stage.

To understand the elementary mathematics covered here, youneed to know a little geometry (similar
figures, the Pythagorean theorem), and a little algebra, up to and including how to solve a quadratic
equation and how to manipulate relatively simple algebraicequations.

Zome is seductive, and it’s easy for kids (and adults) to ignore the math and just to try to “build stuff”.
Try to get the students (or yourself, for that matter, if you’re trying to learn some math) to work through
most of the exercises. But they (and you) will probably enjoythe process a bit more if they’re allowed to
unleash some of their creativity in Zome construction.

There are hundreds of other ways to use Zome in the classroom,and if you go to the Zome website
www.zometool.com you can find a great deal of material suitable for classroom use. In this worksheet
we work almost entirely with two-dimensional structures built from Zome, but one of the main beauties
of Zome is how well it works as a three-dimensional construction set.
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Part I

Questions
In what follows, you will use 10 different Zome parts: the little balls into which the struts can be pushed,
and three lengths each of each colored strut, red, blue and yellow. We will refer to the blue struts asb1, b2

andb3, whereb1 is the shortest andb3 is the longest. In a similar way, we will refer to the red struts asr1,
r2 andr3 and the yellow struts aty1, y2 andy3. Always, the lengths increase with increasing subscripts.

We will be a little sloppy here and use the namesb1, b2, . . . ,y3 to refer not only to the struts themselves,
but to the lengths of the struts.

When you build a “mathematical” Zome structure, the struts must be straight. It is certainly possible,
especially in structures with longer struts, to bend the struts a little. All the mathematics we will explore
here depends on the struts being straight.

The main purpose of the exercises contained here is to show how Zome parts can be used to demonstrate
mathematical facts. We will construct “proofs” that are perhaps not rigorous mathematical proofs, but can
demonstrate certain facts in a very convincing way. In this article, we will call these “proofs by Zome”.

In the different problems, we will investigate such things as the relative lengths of the Zome struts, the
angles they allow, and the kinds of structures, both two-dimensional and three-dimensional that are pos-
sible. If you have a lot of free time, you can probably investigate those relationships without reading any
farther. The material below will lead you more rapidly to theresults.

1 Preliminary Exercises

1. Examine a Zome ball and the various struts. Note that blue struts always attach to rectangular holes,
yellow to triangular holes, and red to pentagonal holes. Also note that every triangular hole on a
ball is “equivalent” to every other in the sense that if another is rotated into its place, all the other
holes will match up. It’s perhaps easier to see this with two Zome balls. The same thing can be said
for the other holes: check this to make sure you see why it is true.

2. Build an equilateral triangle using 3 of theb1 struts. Is it possible to do the same thing using three of
they1 or three of ther1 struts? What does this tell you about the angles between pairs of triangular
Zome holes or pentagonal Zome holes?

3. What other regular polygons can you form using only blue struts, all having the same length?
Squares? Pentagons? . . . Can you form a regular polygon from red struts or yellow struts? How can
you verify that you have all the answers?

4. To be precise, it is not the exact lengths of the struts thatconcern us. If the struts and balls were
mathematically perfect, the length of, say, strutb1 would be the distance between the centers of two
Zome balls attached tightly to the ends of the strutb1. Do you see why this is the most sensible
definition of length?

5. Can you “prove” thatb1 + b2 = b3? Does the same relationship hold for the red and yellow struts?

6. Build a triangle usingb1, b1 andb2. Next build another triangle withb2, b2 andb3. What do you
notice about the two triangles? Can you derive, from that observation:

b1

b2

=
b2

b3

.

7. From this point on, we will call the length of theb1 strut1, or in other words,b1 = 1 Using the
formulas for blue struts derived in the previous two exercises, can you calculate the length of theb2

strut? Can you calculate the length of theb3 strut? We will give the nameτ (the Greek letter “tau”)
to the value ofb2.

2



8. Show thatτ2 = 1 + τ . This provides a simpler form for the value ofb3. What is it?

9. Since the red and yellow struts satisfy formulas similar to that of the blues; namely, thatr1+r2 = r3

andy1+y2 = y3, we suspect that the ratios ofy2/y1, y3/y2, r2/r1 andr3/r2 are all also equal toτ .
Can you construct “proofs by Zome” of these facts?Hint: Build trianglesb1, r1, r1 andb2, r2, r2

and use similarity. Can you do the same thing for the yellow struts?

10. An interesting class project would be to make a catalog ofall possible triangles that can be formed
using three struts and three Zome balls. Since the ratiosr1 : r2 : r3, b1 : b2 : b3 andy1 : y2 : y3 are
all identical, consider only triangles where at least one ofthe struts is anr1, ab1 or ay1. It might be
a good idea to have one master list on the blackboard that different students or groups of students
can add to. Make sure that you have some way to detect duplicates. For example, the triangles
b1, r1, r1 andr1, b1, r1 are equivalent. How could you be certain that your list contains all of them?

2 The Arithmetic of τ

We noticed already that the value ofτ , the golden ratio, satisfies the following equation:

τ2 = 1 + τ.

1. Can you find a simple formula forτ3 that involves only constants andτ , but noτ2 terms?

2. Using the same technique, find a similarly simple formula for τ4, for τ5, for τ6.

3. Find a general formula forτn, wheren >= 0. Hint: Remember the Fibonacci numbersFn:
0, 1, 1, 2, 3, 5, 8, 13, 21, . . .. They are defined by the equations:F0 = 0, F1 = 1 and if n > 1,
Fn = Fn−1 + Fn−2.

4. (Extra credit, and a bit more difficult ) See if you can work out the values ofτ−1, τ−2, τ−3, et
cetera, using the same technique.

3 Relative Strut Lengths

From the previous section, we know the relative strut lengths of the red, blue and yellow struts, at least
compared to others of the same color, and that is:

r1 : r2 : r3 = b1 : b2 : b3 = y1 : y2 : y3 = 1 : τ : τ2,

but now we would like to find out how long the red and yellow struts are in comparison to the blues.

1. Build a triangle using ab1, a b3, and twoy2 struts plus four Zome balls. Obviously, one side
will need to be made from two struts. Use this triangle to determine the length of they2 strut in
comparison to theb1 strut which we have agreed has length one.

2. Using the same idea as above, construct a triangle using ab1, ab2, and twor1 struts plus four balls.
Apply similar calculations to find the lengths of ther1, r2 andr3 struts relative to ab1 strut whose
length is1. Note: The result will not be quite as pretty as for the yellow strut lengths.

4 Zome Angles

In this section we will try to determine the angles formed by pairs of struts coming out from a Zome
ball. For students who know the law of cosines, it is easy to combine the information we have about the
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strut lengths and the structure of some of the triangles we formed in Section 1 to determine many angles
directly.

The law of cosines for a triangle with sidesa, b andc and having anglesA, B amdC opposite those
angles, respectively, states that:

c2 = a2 + b2
− 2ab cosC.

If we use as an example the isosceles triangle formed from thethree strutsb1, b2, b2, if we want to find
the measure of the vertex angle, the law of cosines tells us that:

12 = τ2 + τ2
− 2τ2 cosC,

which we can solve to obtain:

C = arccos
(2τ2

− 1

2τ2

)

= arccos
(

1 −
1

2τ2

)

.

Since we can show that1/τ2 = 2 − τ (see the last problem in Section 2) we can see that:

C = arccos
(

1 −
1

2
(2 − τ)

)

= arccos(τ/2) = 36◦.

But it would be nicer not to have to use such sophisticated mathematics.

1. Find a simple Zome structure that “proves” that the vertexangle in the isosceles triangleb1, b2, b2

is 36◦.

2. If you stick two blue struts into a Zome ball, what are all the possible angles they could make with
each other?Hint: There are seven of them.

4



Part II

Solutions

1 Solutions: Preliminary Exercises

1. No solution required.

2. It is impossible to build an equilateral triangle out of three red or yellow struts all having the same
length. The Zome balls do not admit having two red struts or two yellow struts attached to a ball at
a60◦ angle. There are blue holes that form this angle.

3. With a set of equal-length blue struts, you can make an equilateral triangle, square, and regular
pentagons, hexagons and decagons (a decagon is a 10-sided figure). No other regular polygon is
possible. It is possible to make figures that look almost regular from other colored struts. For
example, you can make a loop of10 yellow struts of the same length that is almost a regular
decagon, but the Zome balls in the resulting figure do not lie in a plane: they alternate up and down.
Similarly, an almost-flat hexagon can be made of6 equal red struts.

4. The actual Zome struts are not mathematical lines and the Zome balls are not mathematical points
which we would ideally like them to represent. If we imagine that the struts represent ideal lines
that pass through their centers, then the point representing the intersection of two of these ideal
lines in a Zome ball would lie in the center of that Zome ball.

5. The proof consists of sticking ab1 andb2 strut into the same ball so that they form a straight line
segment. Compare the length of that combined segment with the length of the longerb3. Exactly
the same thing can be done with the yellow and red struts. (To be technically correct, since we have
defined the length of a strut to be the distance between the centers of two balls on the ends of the
struts, we should attach balls to the ends of theb3 strut as well as to the ends of theb1 + b2 strut
combination and compare the lengths of those.)

6. Since the two triangles you built with the blue struts havethe struts coming out of equivalent holes
in the Zome balls, all the angles in the two triangles must be equal. By AA similarity, the two
triangles are similar, and the formula is simply a consequence of the similarity of the triangles.

7. Sinceb1 + b2 = b3 we can substituteb1 + b2 for b3 in the formula:

b1

b2

=
b2

b3

to obtain:
b1

b2

=
b2

b1 + b2

.

Since we’ve agreed that the length ofb1 is 1, we have:

1

b2

=
b2

1 + b2

,

sob2
2 = 1 + b2. Solving this quadratic equation yields two roots:

b2 =
(1 +

√

5)

2
or b2 =

(1 −

√

5)

2

The second root is negative, so sinceb2 is obviously possible, it must have the value on the left
above, which we will callτ
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Numerically,τ is approximately1.618033987 and it is also known as the “golden ratio” whose
value is exactly:

1 +
√

5

2
.

To obtain the value ofb3, just remember thatb3 = b1 + b2, sob3 = 1 + τ .

8. Sinceτ is the root of the quadratic equationx2 = 1 + x, it must be true thatτ2 = 1 + τ . This
means that the length ofb3 = 1 + τ = τ2.

9. Since the triangles formed fromb1, r1, r1 andb2, r2, r2 are obviously similar, we can just write
down thatb2/b1 = r2/r1. This means that the ratios of the lengths of the shorter red struts is the
same as the ratio of the lengths of the two shorter blue struts, namely:τ . A similar triangle can
be built with b3, r3, r3, and by similarity, the ratios of the lengths of the red struts are the same.
Exactly the same Zome proof works for the yellows, but use thetriangles:b1, y1, y1, b2, y2, y2 and
b3, y3, y3.

10. Here is a list of all possible Zome triangles constructedfrom three struts and three balls that include
at least one side of lengthr1, b1 or y1:

b1, b1, b1 b1, b1, b2

b1, r1, r1 b1, y1, y1

b1, y2, y2 b1, b2, b2

b1, y1, r2 y1, y1, b2

y1, r1, y2 r1, r1, b2

r1, r2, y2 r1, b2, y3

r1, b3, y3 y1, b2, r2

A few of the triangles above are illustrated in Figure 1.

Figure 1: Some Zome Triangles

2 Solutions: The Arithmetic of τ

1. Sinceτ2 = 1 + τ , we can multiply both sides byτ to obtain:

τ3 = τ + τ2.
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But we can re-use the original equation and substitute1 + τ for τ2 in the equation above to obtain:

τ3 = τ + 1 + τ = 1 + 2τ.

2. Since we just worked out the value ofτ3 above, we can multiply both sides byτ to obtain a formula
for τ4:

τ4 = τ + 2τ2.

Again, we’d like to get rid of theτ2 term, so as before, substitute1 + τ for τ2:

τ4 = τ + 2(1 + τ) = 2 + 3τ.

We can use the same method to obtain:

τ5 = 2τ + 3τ2 = 2τ + 3(1 + τ) = 3 + 5τ,

and
τ6 = 3τ + 5τ2 = 3τ + 5(1 + τ) = 5 + 8τ.

3. If you don’t yet see the pattern, work out a few more and you can make a table (where we have
included the coefficients of the constant term and ofτ , even if they are0 or 1):

τ1 = 0 + 1τ

τ2 = 1 + 1τ

τ3 = 1 + 2τ

τ4 = 2 + 3τ

τ5 = 3 + 5τ

τ6 = 5 + 8τ

Notice that the coefficients are all Fibonacci numbers, and it appears that the general form is this:

τn = Fn−1 + Fnτ.

This can be proved by induction. Ifn = 1 we haveτ1 = F0 + F1τ = 0+ τ , which is correct. Now
assume it is true forn = k:

τk = Fk−1 + Fkτ

τk
· τ = Fk−1τ + Fkτ2

τk+1 = Fk−1τ + Fk(1 + τ)

τk+1 = Fk + (Fk−1 + Fk)τ

τk+1 = Fk + Fk+1τ

The final line is in the correct form for the(k + 1)st term, so we are done. Note that, as we did as
we were experimenting, we substituted1+τ for τ2, and to obtain the last line from the next-to-last,
we used the definition of the Fibonacci numbers.

4. To obtain the value ofτ−1 = 1/τ is simple. Just divide both sides of the equationτ2 = 1 + τ by τ
and rearrange to obtain:

τ−1 =
1

τ
= −1 + τ.

Divide both sides of that byτ to obtain:

τ−2 = −
1

τ
+ 1,
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but we know that1/τ = −1 + τ so we can substitute that to obtain:

τ−2 = 2 − τ.

We can continue to obtain a few more values.

Next, consider the Fibonacci numbers that start at0. Could you extend them to make a “reasonable”
formula forF−1, F−2, F−3, et cetera? For example, we would wantF−1 + F0 = F1, and since
F0 = 0 andF1 = 1, thenF−1 would have to be equal to1. This would forceF−2 to be equal to
−1. Do you see why? With these extensions, would our previous formula work when extended to
negative exponents ofτ and to Fibonacci numbers with negative indices? In fact, it would, and it is
just an exercise in algebra to show that it is.

3 Solutions: Relative Strut Lengths

1. The triangle built using ab1, ab3 two y2 struts is a right triangle whose legs have lengths1 andτ2,
and whose hypotenuse (since it’s made of twoy2 struts) is2y2.

The Pythagorean theorem tells us that:

(2y2)
2 = 12 + (τ2)2 = 1 + τ4.

From the previous section, we know thatτ4 = 2 + 3τ , so:

4y2
2 = 3 + 3τ = 3(1 + τ) = 3τ2.

Dividing by 4 and taking square roots of both sides, we determine that:

y2 =

√

3

2
τ,

and since we know thaty1 : y2 : y3 = 1 : τ : τ2 we can conclude that:

y1 =

√

3

2
, y2 =

√

3

2
τ, y3 =

√

3

2
τ2.

If you know the Pythagorean theorem in three dimensions, then there is an easier way to calculate
the length of the yellow struts. Construct a cube using eightZome balls and twelveb1 struts. You
will find that the long (space) diagonal of the cube is exactlythe same as the length of twoy1 struts.
The three-dimensional version of the Pythagorean theorem tells us that:

(2y1)
2 = b2

1 + b2
1 + b2

1 = 3b2
1 = 3,

from which it is easy to calculate thaty1 =
√

3/2.

You can obtain the three-dimensional version of the Pythagorean theorem by imagining a line con-
necting a green strut across the diagonal of a face of the cubesuch that one end of it shares a ball
with one end of the double-lengthy1 strut. (Note: if you have a set of the green struts, you can do
this physically, but many Zome sets do not contain any green struts.) Then the usual version of the
Pythagorean theorem can be applied twice: once to show that the length of the green strut is

√

2
and then using a right triangle that includes the green, double-yellow, and a blue strut to show that
the double-yellow strut has total length

√

3.

2. As above, we have a right triangle whose sides have lengths1 andτ and whose hypotenuse is2r1.
The pythagorean theorem gives us:

(2r1)
2 = 12 + τ2 = 1 + 1 + τ = 2 + τ.
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Take the square root of both sides and divide by2 to obtain:

r1 =

√

2 + τ

2
,

and the fact thatr1 : r2 : r3 = 1 : τ : τ2 allows us to conclude that:

r1 =

√

2 + τ

2
, r2 =

√

2 + τ

2
τ, r3 =

√

2 + τ

2
τ2.

4 Solutions: Zome Angles

1. The simplest is probably the star-shaped structure formed on the left in Figure 2. The ten Zome
struts coming out of the central ball obviously make the sameangle with each other and they are all
co-planar, so they must divide the360◦ into 10 equal parts, so the angle between any adjacent pair
is 36◦. It’s easy to check that the angle formed in the triangle usesstruts coming out of the same
pairs of holes. This also shows, by the way, that the base angles are72◦, since they are the same as
the the angles formed by struts that are two apart on the left in Figure 2.

Figure 2: Blue Strut Angles

There are lots of other possibilities, one of which is illustrated on the right in Figure 2. In this
figure, there are two obviously similar triangles and since theb2, b2, b3 sub-triangle is isosceles, we
can easily see that the base angle of the largest triangle is bisected by the apex angle of the smallest
isosceles triangle. Since the three angles of any triangle must add to180◦, if the smallest angle is
x, we have:x + 2x + 2x = 180◦, or x = 36◦.

2. 36◦, 60◦, 72◦, 90◦, 120◦, 154◦, and180◦.
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