
Tangle Dance Guide

Given two fairly close ropes (belts, whatever) it is easy to run this activity anywhere. It
is visually very appealing and will attract crowds. It also connects to a large amount of
mathematics. Many people present this as a magic trick tying a bag over the tangle. I
recommend starting with the Euclidean algorithm because it is one of the most important
mathematical tools from the middle school curriculum that is commonly neglected. A video
of the start of a session run in this way is available at http://youtu.be/fSaI1jQbEfo .

A video following a different script by Tom Davis may be seen at:
http://www.youtube.com/watch?v=iE38AXV_dHc .

The Tom Davis notes may be found at http://www.mathcircles.org/files/tangle.pdf .

Reducing Fractions The first way students are taught to reduce fractions is to guess
possible common factors. This is a good start, however at some point students should be
led to discover the algorithm to reduce fractions. Any fraction in which the common factor
is a moderately large to large prime is difficult to reduce by guessing because there are too
many factors to try. Common factors such as 23, 43, 61, 101 will give students problems,
until they learn the algorithm. Sample fractions of this type include: 529/713, 1333/2537,
1403/6161, and 3721/10007 (no one should start with this last one). You can bring these
and a few more that you prepare ahead to use as examples. Of course it is not too difficult
to take a moment and create one.

Starting the activity with some math Ask the audience to reduce the fraction 341/2821.
The odds are they won’t know how to do it. Ask them how common factors to 341/2821
compare to the common factors in 2821/341, then ask if they can write 2821/341 in a different
way i.e. as a mixed fraction. They should be able to use long division to do this. Have them
do it. The answer is 8 93

341
. Remark that if the first fraction were really some number of 13ths

the answer would be 8 and some number of 13ths. Thus anu common factor would also be
a common factor in 93/341. Can they find it? No problem – just repeat. Consider 341/93.
Write it as a mixed fraction, remove the integer part, and repeat until it is obvious how to
reduce the fraction. This gives the chain:

341/2821→ 2821/341 = 8 93
341
→ 93/341→ 341/93 = 362

93

→ 62/93→ 93/62 = 131
62
→ 31/62→ 62/31 = 2 .

We conclude that 31 is a common factor to both 31 and 62, thus a common factor to 62 and
93 and dots thus it is a common factor to both 341 and 2821. The divisions 341/31 = 11
and 2821/31 = 91 then show that the original fraction is 341/2821 = 11/91. Tell the
audience that the process in the chain above is a sequence of transformations x 7→ 1/x and
x 7→ x − 1. Make sure that they remember why x 7→ 1/x just flips the fraction, and note
that 8 93

341
→ 93/341 is just x 7→ x− 1 done eight times in a row.
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Dance Time The first thing to do is to design the choreography. The two basic moves are:

T = Twist Up x 7→ x + 1

S = Swing around x 7→ −1/x

These moves are clearly very close to the moves used to reduce fractions (x 7→ 1/x and
x 7→ x − 1). [The names and choice of signs arise because these or standard generators
of something known as the modular group. Other presenters use different letters, but we
recommend using S and T because these are the standard names.] The choreography is a
sequence of numbers starting at 0 that become more complicated as a sequence of S and T
moves is applied, and then gets driven down to 0 by more moves. The presenter can start
by writing a few moves down to make the fraction get a bit complicated:

0
T−−−→ 1

T−−−→ 2
T−−−→ 3

T−−−→ 4
T−−−→ 5

S−−−→ −1/5
T−−−→ 4/5 · · ·

Then take requests, “T or S next?” once the sequence is a bit longer and the fraction is
something like 11/17 ask the audience what to do to drive it down to zero. They should be
able to figure out a system that works.

Ask them to do the arithmetic.

Ask them to give rules to drive the fraction down to zero.

Ask them why these rules work.

Leave the choreography sequence in view.

Now get four audience volunteers for the dance. Have them stand in a square and hand each
person one end from a pair of ropes so that the ropes are parallel. Write the word “UP”
on paper and put it on the ground next to one person as a cheat sheet. Explain that the
first move is called “Twist Up” – the person standing next to the “UP” lifts their hand and
trades places with the person next to them who is not on the same rope. Have them practice
this move one or two times. The next move is called “Swing Around” – everyone walks to
the next corner of the square in a counter-clockwise orientation. Have your dancers practice
these moves a few times. At this point have your dancers do the last move “Display” –
the two people in the back hold their hands up. Now have one person let go of the rope
straighten the ropes and get ready.

It is now time to dance their choreography sequence. Have the dancers display at the mid
way point, then keep going and display at the end.

This is a nice trick, but it also contains many great mathematical problems and is related
to many interesting mathematical applications. These rational tangles were introduced by
John Conway as a tool to help organize the list of all possible knots, [1]. Knot theory
is an interesting mathematical subject in its own right. Rational tangles have been used
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in mathematical biology to model long DNA strings, [2]. The Euclidean algorithm finds
applications throughout mathematics. It will appear whenever one needs to analyze linear
families of integers, continued fractions, lattices. It is used in RSA cryptography as well as
many other encryption schemes, [3].

Because this activity is related to so much mathematics, it is worth exploring some of the
math. The fact that the numbers come back to zero does not imply that the ropes will
untangle. One needs to verify that the ropes follow the same relations. The argument that
any fraction may be driven to 0 via the S(x) = −1/x and T (x) = x + 1 moves shows that
one can get to any fraction from 0 using the inverse moves S−1(x) = S(x) = −1/x and
T−1(x) = x − 1. Ask the audience to explain this. The same argument will show that any
fraction can be obtained from 0 via a sequence of S and T moves. The modular group is the
collection of all linear fractional transformations:

r(x) =
ax + b

cx + d
, such that ad− bc = 1 .

It is denoted PSL2Z. This argument shows that the modular group is generated by the S
and T transformations.

To know that the ropes follow the algebra, we need to know that the ropes satisfy the
same relations that the S and T transformations satisfy. It is known that every relation
between these transformations is a consequence of the relations:

S2 = id, and (ST )3 = id .

One can prove that every rational tangle i.e. tangle created by the dance procedure satisfies
the same relations via induction. Make the audience go through this. A good way to do this
is to close a book over top of the two ropes and then do the moves in one of the relations.

Tie a knot in one of the ropes, then tangle the result with the other rope. Can
the result be rational?

Show that every rational tangle has three 2-fold rotational symmetries.

Is every tangle in which each rope is unknotted, that has three 2-fold rotational
symmetries rational?

Is there a reasonable extension of a tangle that could represent
√

2?

The Euclidean algorithm is the fancy name for the long division algorithm. Most students
learn long division, but they do not learn the related computations involved in computing the
greatest common divisor of a pair of integers, reducing a fraction, or solving linear diophan-
tine equations such as 34x + 231y = 5 for all integer solutions. Drilling these computations
is not in the spirit of a math circle, but it would be good to include these computations as
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part of the regular curriculum. Here is a sample solution to a linear diophantine equation.
Compare it to the rational tangle dance:

15 · 0 + 26 · 1 = 26

15 · 1 + 26 · 0 = 15
26

15
= 1

11

15
, so subtract 1

15 · (−1) + 26 · 1 = 11
15

11
= 1

4

11
, so subtract 1

15 · 2 + 26 · (−1) = 4
11

4
= 2

3

4
, so subtract 2

note − 1− 2 · 2 = −5 and 1− 2 · (−1) = 3 so

15 · (−5) + 26 · 3 = 3

15 · 7 + 26 · (−4) = 1 .
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